Search for Science Fair Projects

1000 Science Fair Projects with Complete Instructions

Attribution: This is a cached copy of a third party project. Many of these sites are from 20 years ago and the majority are no longer running. We show only the first page of the project. We do not save all pages since copyright belongs to the third-party author.
Similarities between the Spread of an Infectious Disease and Population Growth

How Does an Infectious Disease Spread?

An infectious disease is any disease caused by germs that can be spread from one
person to another. Germs include viruses, bacteria and protozoa. What are some
infectious diseases?
 
What are some diseases that are not infectious?

This activity will simulate the spread of an infectious disease. A simulation
is a simplified demonstration of a real biological process. Our simulation will
show how an infectious disease
can spread from one infected person to other people, who in turn infect others.

Instructions

1. Your teacher will give everyone
a cup filled with a clear solution. This solution represents your body. Only one
person in the class will have a cup that has been “infected”.

Obviously, you
should not drink from the cup. (In laboratory activities you should never drink
or eat anything unless your teacher tells you that it is safe to do so.)

2. In this part of the activity, you will interact with two other students.
To interact with another student, pour all of your solution into your partner’s
cup. Then have your partner pour all of the mixed solution back into your empty
cup. Finally, pour half of the mixed solution back into
your partner’s empty cup.

Wait for the signal from your teacher, and then move to
another part of the classroom and interact with a second student. After you have
finished your second interaction, return to your seat.

Estimate how many people you think will be infected.

3. Your teacher will come around and put an “infection indicator” in your
cup. If you have exchanged solutions with the
original infected person or someone else after they became
infected, you are now infected and your solution will turn pink. 
If you have not exchanged
solutions with anyone who was infected, your solution will not turn color.

4. Repeat
another set of interactions, again beginning with only one student with
an infected cup. This time there will be three rounds of interactions. For each
interaction, be sure to move to a different part of the room with
different students.
 
After the teacher has come around with the
indicator, write down how many people were actually infected.

 5. Now graph how an infection spreads with increasing numbers of interactions.

First, plot a point to indicate that one
person was infected before any interactions. How many people would be
infected after just one interaction?

Next, plot the number of people who were infected after two interactions (from 3
on page 1) and the number of people who were infected after three interactions
(from 4 on pages 1-2).

 Our simulation showed the way a disease
could spread if the spread of disease depends on person-to-person
contact.

Population Growth

There are interesting similarities between the spread of infectious
diseases and population growth, e.g., the increase in the number of
bacteria, plants or animals in a population. For example, in a
growing population of bacteria, each bacterium can give rise to two new bacteria
after about 30 minutes. This results in a doubling of the number of bacteria
every 30 minutes, which is similar to the doubling in the
number of infected people after the first and second rounds of disease-spread
interactions.

Suppose a single bacterium is placed on an agar plate and the number
of bacteria in the population doubles every 30 minutes. How long do you think it
would take before there would be 1000 bacteria?

To calculate how long it would actually take for the single bacterium to
multiply to form a colony of 1000 bacteria, fill in the number of bacteria at
each time in a table with the following rows:
- bacterium at the beginning
- bacteria after 30 minutes
- bacteria after 1 hour
- bacteria after 1 hour and 30 minutes
- bacteria after 2 hours
- bacteria after 2 hours and 30 minutes
- bacteria after 3 hours
- bacteria after 3 hours and 30 minutes
- bacteria after 4 hours
- bacteria after 4 hours and 30 minutes
- bacteria after 5 hours

How long would it take for the population of bacteria to
increase from 1 bacterium to 500 bacteria?

How long would it take for the population of bacteria to increase from 500
bacteria to 1000 bacteria?

Notice that, when a population doubles every 30 minutes, the number of bacteria in the
population increases faster and faster as the population gets larger.

This kind of population growth is called exponential growth.

To see what exponential growth looks like in a graph, use the data from the
above table to plot the number of bacteria on a graph where the x-axis is every
hour.

If exponential growth continued for 10 hours, the original single
bacterium would increase to a population of over one million bacteria. This
illustrates how exponential growth can result in very
rapid increase of population size.