# All Science Fair Projects

## Science Fair Project Encyclopedia for Schools!

 Search    Browse    Forum  Coach    Links    Editor    Help    Tell-a-Friend    Encyclopedia    Dictionary

# Science Fair Project Encyclopedia

For information on any area of science that interests you,
enter a keyword (eg. scientific method, molecule, cloud, carbohydrate etc.).
Or else, you can start by choosing any of the categories below.

# Pseudo-Riemannian manifold

In differential geometry, a pseudo-Riemannian manifold is a smooth manifold equipped with a smooth, symmetric, (0,2) tensor which is nondegenerate at each point on the manifold. This tensor is called a pseudo-Riemannian metric or, simply, a (pseudo-)metric tensor.

The key difference between a Riemannian metric and a pseudo-Riemannian metric is that a pseudo-Riemannian metric need not be positive-definite, merely nondegenerate. Since every positive-definite form is also nondegenerate a Riemannian metric is a special case of a pseudo-Riemannian one. Thus pseudo-Riemannian manifolds can be considered generalizations of Riemannian manifolds.

Every nondegenerate, symmetric, bilinear form has a fixed signature (p,q). Here p and q denote the number of positive and negative eigenvalues of the form. The signature of a pseudo-Riemannian manifold is just the signature of the metric (one should insist that the signature is the same on every connected component). Note that p + q = n is the dimension of the manifold. Riemannian manifolds are simply those with signature (n,0).

Pseudo-Riemannian metrics of signature (p,1) (or sometimes (1,q), see sign convention) are called Lorentzian metrics. A manifold equipped with a Lorentzian metric is naturally called a Lorentzian manifold. After Riemannian manifolds, Lorentzian manifolds form the most important subclass of pseudo-Riemannian manifolds. They are important because of their physical applications to the theory of general relativity. A principal assumption of general relativity is that spacetime can be modeled as a Lorentzian manifold of signature (3,1).

Just as Euclidean space $\mathbf R^n$ can be thought of as the model Riemannian manifold, Minkowski space $\mathbf R^{p,1}$ with the flat Minkowski metric is the model Lorentzian manifold. Likewise, the model space for a pseudo-Riemannian manifold of signature (p,q) is $\mathbf R^{p,q}$ with the metric

$g = dx_1^2 + \cdots + dx_p^2 - dx_{p+1}^2 - \cdots - dx_{p+q}^2$

Some basic theorems of Riemannian geometry can be generalized to the pseudo-Riemannian case. In particular, the fundamental theorem of Riemannian geometry is true of pseudo-Riemannian manifolds as well. This allows one to speak of the Levi-Civita connection on a pseudo-Riemannian manifold along with the associated curvature tensor. On the other hand, there are many theorems in Riemannian geometry which do not hold in the generalized case. For example, it is not true that every smooth manifold admits a pseudo-Riemannian metric of a given signature; there are certain topological obstructions.

03-10-2013 05:06:04
The contents of this article is licensed from www.wikipedia.org under the GNU Free Documentation License. Click here to see the transparent copy and copyright details
Science kits, science lessons, science toys, maths toys, hobby kits, science games and books - these are some of many products that can help give your kid an edge in their science fair projects, and develop a tremendous interest in the study of science. When shopping for a science kit or other supplies, make sure that you carefully review the features and quality of the products. Compare prices by going to several online stores. Read product reviews online or refer to magazines.

Start by looking for your science kit review or science toy review. Compare prices but remember, Price \$ is not everything. Quality does matter.
 Science Fair Coach What do science fair judges look out for? ScienceHound Science Fair Projects for students of all ages
 All Science Fair Projects.com Site All Science Fair Projects Homepage Search | Browse | Links | From-our-Editor | Books | Help | Contact | Privacy | Disclaimer | Copyright Notice